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The theory of deuteron stripping for incident deuteron energies below the Coulomb barrier is presented 
for proton-neutron interaction of finite range. Reasonable approximations valid only for the conditions 
prevailing in the case of Coulomb stripping enable factorization of the transition amplitude in analytic 
form. The results account for observed regularities and explain the discrepancy between experiment and a 
theory based on zero-range nuclear forces. Stripping with associated Coulomb excitation is shown to be a 
competing process for sufficiently low deuteron energy. The reaction enables excitation of a new class of 
excited states. It should in particular yield information about the alleged multiplet structure of low-lying 
states of odd-^4 nuclei, of which the even-even neighbors show vibrational spectra. Angular distributions of 
outgoing protons resulting from stripping on targets with J% ^ 1 may yield information about static quad-
rupole moments of those nuclei. The contribution of the polarizability of the deuteron to the differential 
cross sections is shown to be negligible. 

I. INTRODUCTION 

STRIPPING reactions have proven to be one of the 
most useful tools in the study of nuclear structure. 

The mechanism, a lowest order direct nuclear inter
action between one of the nucleons of the deuteron with 
the target nucleus, is apparently widely valid, and the 
characteristic patterns for the angular distribution of 
(d,p) and (d,n) reactions are reasonably understood on 
the basis of this mechanism.1 

Stripping reactions have been studied extensively at 
deuteron energies large compared to the Coulomb 
barrier. The deuteron as a whole will then be able to 
make relatively close contact with the target nucleus, 
thus, enabling a direct interaction. 

For deuteron energies small compared to the Coulomb 
barrier one expects a decrease of the stripping efficiency, 
while at the same time the relative importance of Cou
lomb effects and the actual structure of the deuteron 
increases. 

Stripping at energies smaller than the Coulomb 
barrier has been treated by Ter Martirosyan2 and 
independently by Biedenharn et aUA and goes some
times under the noncharacteristic name of Coulomb 
stripping. [This name would be more appropriate for 
the Oppenheimer-Phillips process,5 where deuteron dis
sociation by the Coulomb field preceeds a typical 
nuclear interaction.] The above-mentioned authors 
have used an approximation which neglects the finite 
range of the proton-neutron force in the deuteron. Ex
perimental results, however, show absolute cross sec-
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tions which are a factor 4-5 bigger than those calculated 
the zero-range approximation.6 

The cause of the discrepancy may be understood once 
it is realized that Coulomb stripping is a marginal direct 
interaction process, in the sense that the transition am
plitude is proportional to the weak overlap of the tail of 
the wave function of the captured neutron with that of 
the incident deuteron. An approximation which neglects 
the finite size of the deuteron, forces the neutron to be 
close to the proton. I t thus prevents the neutron from 
penetrating closer to the nucleus where its overlap with 
the capturing state is much better. We have here an 
indication why a zero-range approximation may under
estimate the cross section. 

Section I I contains a treatment of Coulomb stripping 
for a conventional finite range proton-neutron inter
action. I t will be shown that reasonable approximations 
can be made in the case of Coulomb stripping, which 
would not be valid for normal stripping conditions. 
These approximations lead to a factorization of the 
transition amplitude, and one consequently obtains the 
cross section in an analytic form. This approach will be 
shown to remove the discrepancy between experimental 
results and the zero-range theory. 

The increase in the relative importance of the Cou
lomb effects makes it necessary to investigate competing 
processes, which also lead to a final nucleus consisting 
of .4 + 1 nucleons and a scattered proton. The most 
probable of this is presumably Coulomb excitation ac
companying stripping and this process is described in 
Sec. I I I . The mechanism is of particular interest since a 
new class of states in the final nucleus can be reached. 
Indeed, the n-p interaction does not involve the target 
coordinates and leads only to final states containing a 
neutron in a single particle state coupled to the target in 
its ground state. The stripping reaction combined with 
Coulomb excitation may lead to states describing a 
single neutron coupled to a Coulomb-excited target. 
Such processes are, in principle, also possible in ordinary 

6 J. R. Erskine, W. W. Buechner, and H. A. Enge, Phys. Rev. 
128; 720 (1962). 
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stripping reactions. Their cross section is, as we shall 
see, smaller than that for Coulomb stripping which in 
turn is less probable than normal stripping. The associ
ated stripping is, therefore, generally masked when 
normal stripping can proceed, but is of relevance when 
Coulomb stripping is the dominant process. 

Section IV discusses the effect of a finite polarizability 
of the deuteron. In spite of the loose structure of the 
deuteron, it turns out that for deuteron energies suffi
ciently below the Coulomb barrier, one may neglect the 
contribution of its polarizability to the differential 
cross section. 

II. COULOMB STRIPPING 

The Hamiltonian describing a (d,p) reaction can be 
written in the form 

+ VnN+VpN»c+VpN
G. (1) 

HN{£) is the target Hamiltonian written in internal co
ordinates £; Tp, Tn, and Vpn are the kinetic and inter
action energies of the nucleons in the deuteron; VUN 
and VPN denote their interaction with the target nucleus 
and we have decomposed VPN into its Coulomb part 
VPNC and the remainder VPNnC such that 

e2 

VpN=Vpn»
c+Vpn

c and VpN° = £ . 
protons J Tp—r?;| 

We also use the coordinates t=rp—rn, R = | ( r p + r n ) . 
We denote by >F/+) scattering states which are solu

tions of (E— # ) ^ ( + ) = 0. ^ ( + ) describes a deuteron 
with energy Ed~ h2kd

2/4tM incident on a target specified 
by | ciiJiMi) and outgoing scattered waves, a* stands for 
all quantum numbers required to describe the target 
nucleus in its ground state in addition to its total angular 
momentum Ji and the magnetic quantum number Mi. 

The final state of our system, $ / ( - ) , is a product wave 
function of | a/J/Mf) and that of a proton with asymp
totic momentum hp. The proton is supposed to move in 
an effective field Vp which approximates VPN. VP 

usually consists of a nuclear optical potential F o p and 
of Ze2/rPy the dominant monopole part of VPN° for 
VP>RN, where RN is the nuclear radius. Inside the 
nucleus the Coulomb potential is assumed to be due to a 
Saxon-Woods-type charge distribution. 

The complete transition amplitude is then given by 

e2 Ze2 

f=(zkp^"'J'M'\vpn+ E . 
pro tons \rp— ti\ Tp 

+ VpN-Vop\*kd^«<JiMi). (2) 

VnN and VPN are in the usual distorted-wave Born 
approximation replaced by an optical potential acting 
on the center of mass of the deuteron. ^ ( + ) is then a 
solution belonging to the Hamiltonian 

H=HN(i)+Tp+Tn+Vpn(r)+Z#/R+Vov(R), (3) 

where it is understood that Ze2/R is omitted for R<RN. 
For Coulomb stripping we expect the dominant con
tribution in (2) to come from the interaction region 
around fp, the classical turning point for a proton of a 
momentum k^. I t is, therefore, reasonable to neglect, 
for fp^>RNl the difference VPN— Vop, the range of which 
is of order RN. 

The amplitude / may then be decomposed into two 
amplitudes / = / ( 1 ) + / ( 2 ) , which describe, respectively, 
stripping due to the proton-neutron interaction Vpn, and 
stripping with associated Coulomb excitation via 

e2 Ze2 

Fce== £ _1_. (2) 
protons \Tp—T{ | Yp 

In the modified distorted-wave Born approximation, 
which we shall use for Coulomb stripping, -̂<+> will be 
chosen to be an approximate solution of the Hamiltonian 

H'=HN{$)+Tp+Tn+VPn+Ze*/rp. (5) 

The true monopole part of VPNG rather than Ze2/R is 
restored in (5), and in using (2) we again neglect VUN 
and VPNn0 in comparison with VCe. Higher order terms 
in the Born series will lead to contributions to / which 
are at least one order higher in Vpn or FC e . 

Let us first consider the Coulomb stripping amplitude 
/ ( 1 ) which, on introducing the approximations described 
above, reads 

fW=(*kp<r-Wf"f\ Vnp\**d
M«iJiMi), (6) 

with 

$ „ , < - > « / ' / " / = cPafJfM^tn^n)^^ {rp^p) . (7 ) 

(pa/j/Mf describes the final nucleus produced in the re
action while ^kp(~} consists of a proton spin wave func
tion XWsp(<rp), coupled to an ingoing Coulomb wave 
function 

^kp(")(rP) = expf—»fpj r ( l—^ p )exp( ikpTp) 

(8) 
XF(tr)p, 1, —t(kprp—kpTp)). 

rjp=Ze2tn/li2kp, 

M>,(+), a scattering solution of Hf Eq. (5), can be written 
as a product of the wave function of the target (paiJiMi 
and of a deuteron wave scattered by a point Coulomb 
potential Ze2/rp. The latter wave function has the form 

^kd
(+)(rn,rp)XMd^(crn,cFp). (9) 

No coupling between orbital and spin parts is assumed 
while, moreover, for XMd

Sd(<rn,<rp) a pure *S state is 
taken; 

*Md^l£mSp,m8n{%m8JimSH\ lMd)xmSpxm$fi. (10) 

WTe now return to the amplitude J (1) and make the 
usual statement regarding the overlap integral of final 
and target nucleus present in Eq. (6). This function of 
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will be assumed to represent a neutron with 
quantum numbers (xnlnjnmn moving in a central field of 
the target. 

(p/(&*n,<Fn) | *>*(£;)) 
= Y,mrXjnmnJiMi\jfMf)$anlnJnmn(rn,an) . ( H ) 

In substituting (11) into (2) wTe then find 

/(1.) = Zmn(inl»»/iM r i | / /M /) 

X <*an W»«»( r»^»)^ftp (" ) (rp)XW,p(<FP) 

X | F p n l X t ^ + ^ r n ^ X ^ ^ I T p ^ n ) ) . (12) 

We first perform the spin summation 

yd) = Y<MsP™>sjninmn {jnfnnJiMi \ JfMf) {hms^m&n \ lMd) 

X (hm8Jnmin | jnmjfanintnin™ • (13) 

[Since XMd is an eigenstate of (rp'vn with eigenvalue 1, 
one sees that for an interaction of the form Vpn= Vpn

a) 

+ VPni2)(0p'0n), (12) yields the same results provided 
Vpn is replaced by Vpn

{l) (r)+ Vpn
{2) (f).] Equation (13) 

defines the partial amplitude faninmin
a) 

X|Fp„|Xk d<+)(rp ,r»)>. (13') 

For a further evaluation of / ( 1 ) we shall employ ap
proximations which are exclusively valid for Coulomb 
stripping. All are based on the observation that the 
dominant contribution to / can actually be localized. 
Indeed, the Coulomb barrier prevents the proton from 
approaching the target nucleus, thus requiring the 
interaction area to be outside fp, the classical turning 
point for the proton. The exponential decrease of 
Ranin(rn)} the neutron radial wave function outside the 
centrifugal barrier, favors on the other hand interactions 
as close as possible to the nuclear surface. The effective 
interaction area resulting from these two tendencies is 
determined by the intrinsic deuteron wave function and 
the proton-neutron interaction. Both have a character
istic range of the order of the deuteron radius Rd, which 
is much smaller than fPj the classical distance of closest 
approach. The interaction region in (2) will, therefore, be 
limited to a region Rd<£rp in the vicinity of the classical 
distance of the closest approach. On this basis we now 
suggest the following approximations: 

R«nin(rn)~Aanln(En) , (14) 
R"nTn 

where kn= '(— 2mEn/fi
2)1/2 is related to En, the binding 

energy of the captured neutron. 
Equation (14) expresses the fact that outside the 

centrifugal barrier [i.e., for &nrn>>>Z(Z+l)/2] the radial 
part of the captured neutron wave function may be 
replaced by its asymptotic behavior suitably normalized 
by Aanin(En). 

Ylnmin(Vn)^Ylnmin(ttp). (15) 

Since fp is big compared to the dimensions of the 

deuteron, (IS) asserts that, seen from the nucleus, the 
neutron and the proton in the deuteron appear at 
approximately the same directions. 

^ ( + ) ( r » , r p ) - ^ / + > ( r p ) x ( r ) , (16) 
where 

^kd
(+)(rp) = e x P r - - i ? d V ( l + f i 7 d ) 

Xexp(ikd-rp)F(—h\d, 1, i(kdrp-kd-rp)) (17) 

and x (r) is the spatial part of the deuteron ground-state 
wave function. ^kd

( + )( rp) is a n outgoing wave function 
for the deuteron center of mass but with the argument 
R replaced by rp. The deuteron is thus described as a 
rigid body which maintains a fixed shape as it traverses 
the Coulomb field. In the approximation frequently 
made one replaces Xk d

( + )(rp , r„) by ^ k / + ) ( R ) x W > im~ 
plying that the most important factor determining the 
reaction is just the natural spread of the deuteron due to 
its low binding energy. This approximation neglects 
entirely the asymmetry of the proton and neutron in the 
deuteron with respect to the target Coulomb field. Our 
choice, on the other hand, describes a proton which is 
less likely to reach the nuclear surface than the neutron, 
which fact should be important under the conditions 
for Coulomb stripping. 

In addition to the replacements mentioned above we 
shall use the expansion of e~knrn/knrn needed only for 
rp>r 

= =— 4TT]L X) ji{iknr)hi(iknrp) 
knrn kn\rp— r | z=o m=-z 

XFim*(O r)F,„(Qp), (18) 

where ji, hi are spherical Bessel and Hankel functions, 
respectively. 

We now substitute (14)-(18) into (13). Since the 
deuteron has been assumed to be a pure 35 state, only 
the l=m—0 term in (18) contributes. The partial ampli
tude for Coulomb stripping to a state with a captured 
neutron characterized by anlnmn appears now factorized 
and reads 

fanlnmln
a)=-Aanin(En) / h{iknfp) 

X F ^ * ( Q p ) ^ H * ( r p ) ^ w (rp)drp 

X (4TT)1/2 f P jo(iknr)Vnp(r)X0(rydr, (19) 
Jo 

where X0(r) is the radial part of the deuteron wave 
function. 

Using the saddle-point approximation,2 Eq, (19) can 
be written in the form 

Uinmn
w = Aanln(En)Ylnmin*(QP)I(dp)F(kn,rP), (20) 
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where Qp is the value of tip at the saddle point and 6P is 
the angle between kd and kp. The orbital factor / equals 

no,)- /

P—knrp 

(-)* (*p)W+)(*p)drp, (21) 

while the deuteron "form factor" F(kn,rp) reads 

F(kn,fp)=-(4;ir) 1/2 jo(iknr)Vpn(r)x0(r)r2dr. (22) 

In terms of the amplitude (20) the partial differential 
cross section for Coulomb stripping corresponding to 
(13) is given by 

d*<» M2 kp ( 2 / / + 1 ) 

dtt (2irfi2)2kd (2Ji+l) 

X\Aanln(En)\^\F(kn^p)\^\I(ep)\K (23) 

The orbital contribution I(dp) has been calculated by 
Ter Martirosyan2 who used some techniques developed 
by Sommerfeld.7 The result is 

\nep)\2= 
64:w4rjpr}d 

kn(e
27r^-l)(e2r^-l) 

exp[2?7rf (TT—4>d)+2^0 J 
X-

{(h-kp)
2 + kn

2}2 

\F(iVpyiVdy I " ? ) ' 2 

X 

where 

0 p =arc t an -

i+f 
(24) 

xLKfirC p 

™d ftp I *vn 

Ze2m d<> 

0rf=arctan-
ZKnKd 

&d ftp f*n 

lkKpKd 

v= ; f=f 0 s in—; f0 = -; — — ; 
fi2k 2 (k r f -k„ ) 2 +k n

2 

0^4>p, 0d^7T. 

\I(0P) 12 yields the angular distribution of the protons 
with respect to the direction of the incident deuterons. 
The factor is common to both the finite-range and zero-
range theories. I t has been shown in Ref. 2 that for rjPi 

rjd^>ly | / ( 0 P ) | 2 represents a Gaussian distribution 
around a backward angle which describes the experi
mental data reasonably well. pThis result was also 
derived later by R. Lemmer8 who used an elegant semi-
classical argument.] 

Next we turn to the form factor F(kn,fp) given by 
(22). This integral over the relative coordinate of the 
deuteron can be calculated for any given Vpn(r) and 
associated XQ(r). 

7 A. Sommerfeld, Wellenmechanik (Frederick Ungar Publishing 
Company, New York, 1953), Chap. 7. 

8 R, Lemmer, Nucl. Phys. 39, 680 (1962). 

In the zero-range limit F(kn/p) is independent of kn. 
For finite ranges, however, it is an increasing function 
of kn, and for any given value of kn, F{kn,fp) increases 
with the increase of the range of Vpn. 

Let us take, for example, Vpn(r) to be a Hulthen 
potential 

Vpn(r)=-V0 , (25) 
\ — e-»r 

where Fo=44.5 is the depth parameter of the well in 
MeV and ff1 is the range of the nuclear force (^1 .4 
X10~13 cm). The corresponding deuteron wave func
tion is 

Mr) - [ • 
2a(a+M)(2(x+ /u)-|1 

a2 J 

r ( l - r) 
(26) 

a is related to edl the binding energy of the deuteron, by 
fi2a2/M=ed. 

On substituting (25), (26) into (22) one obtains 

F(kn)=-
-2a(a+n)(2a+n)' 2 (47r)1/2Fo 

(a+f^y-K2'' 
(27a) 

where we have replaced the upper limit of integration 
rp by co. This latter approximation does not markedly 
change F(kn,rP) since in actual cases a-\-ix^>kn. One may 
compare at this stage F(kn) with the corresponding form 
factor Fo for the zero-range potential 

Fo=-(*2 /AT)(8ira) 1/2 (27b) 

We have plotted in Fig. 1, \F(kn)/Fo\2 as a function of 
the Q value of the reaction. This ratio increases with Q. 
For <2=0, \F(kn)/Fo\2c^4:.5. Experimentally it was 
found by Erskine et al.e that the zero-range formula for 
the absolute differential cross section in the case of 
Bi209(d,^)Bi210, indeed, underestimates the experimental 
value for Q= — 0.2 MeV by a factor 4.5 which increases 
slowly with Q. 

The agreement between the calculated absolute cross 
section and its experimental value for Bi209(d,^)Bi210 

might be somewhat accidental, but^it is believed to 

FIG. 1. Ratio of deu
teron form factor for 
Coulomb stripping using 
a Hulthen potential and 
normalized zero-range 
potential as function of 
Q value. 
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demonstrate the importance of the finite range of Vpn in contain instead of the overlap integral (11) the factor 
the description of Coulomb stripping potentials. 

(<PafJfMf(&n,Vn)lL f^Y^Qj) \ <paiJiMi(£)) , (29) 
III. COULOMB STRIPPING ACCOMPANIED BY i-i 

COULOMB EXCITATION l l r l , , , ., , , 
where the final nucleus is assumed to be described by a 

I t was mentioned before that since the proton-neutron single neutron coupled to a Coulomb excited target 
interaction does not involve the target coordinates, Vpn nucleus, or 
cannot lead to a final nucleus, where the captured neu- (t \ 
tron is coupled to an excited state of the target nucleus. «/^/M/VS> «> » 
In normal stripping such an excitation can in principle ~ ^mn^sn,mspK2msJnfnin \ jnmn) 
be caused by the term F o p - VpN

nC in the perturbation. X {umJlM- \ J'fMf)Xm8n(vn) 
In Coulomb stripping the deuteron is too far away from XJ?.an?n(rn)FznWIn(fln)^«t-jt-Mi'(?) > (30) 
the nucleus to feel any appreciable nuclear force. There w h e r e i s t h e w a v e function of the Coulomb 
remains, however, the possibility to excite those states e x d t e d t a t n u d e u s ^ E q u a t i o n ( 2 9 ) will, thus, contain 
by the remaining long-range Coulomb perturbation V*; t h e r e d u c e d m a t r k e l e m e n t for a n d e c t r i c t r a n s i t i o n o f 

! ? S J lrp>ri ° a n e x p a n d e d m t 0 l t S m u l t l P ° l e P a r t s multipolarity X. By means of as follows: 

z 
] / C e = = £ „ 

e2 Ze2 z oo +x 
= E E Z • 

4TT 
ply (A~f-1)^.A 

i=i \rp— r,-| rp ;=i x=i M==-X 2X+1 i z 

The reaction amplitude / ( 2 ) resulting from VCe will now one expresses / ( 2 ) as 

47T6 
/ ( « ( \ ) = {By^EX)}1'* T.mSnmSpmlnmnMi', (JiM^J/M/) 

2X+1 
X (hMsp\mSn\ lMd)(hfn8nlnmin\jnthn)tinnirJiMi\JfMf) 

X / ( * « * i n ( r » ) F , n m l ; * ( ^ (31) 

Let us call again the integral on the right-hand side of (31) a partial amplitude /anjwmZn
(2)(XM)« By virtue of the 

same argments as used in Sec. I I to reduce the amplitude f(l\ [Eq. (13)] into a product of two integrals [Eq. 
(19)], we obtain for faninmln

w(X/0 

?n) / koiikrf faninmin^M=-Aanln(En) I ho(iknrp)Ylnmi^(iWY^H^)W-^(rp) 

X^/+KrP)rP~^ldrp(4T)^ f * j»(iknr)X0(r)r2dr. (32) 
Jo 

The corresponding partial differential cross section is given by 

da^ M2 kp 167r2e2Bi^i(E\) _ 
(\mSnlnMin | jnmn) (im8nlnmin

f \ jnmn
f) 

dQ {lirtl2)2 kd ( 2 X + l ) 2 ( 2 7 + 1 ) magnetic quantui 
numbers 

X (jn^nJ/M/1 JfMf) (jnmn'J/Mi" | JfMf) (JM&p \ J/M/) 

X (JiMM' I / /M«") /a , i nm u»> (te)faninmin. <»*(V) • (33) 

On using the saddle-point approximation one may reduce Eq. (33) to the following form (see Appendix) 

da^ M* fep(2//+l)(2/B+l)(2j»+l)(2/,-'+l) 
.= ____ e*B,^i(E\) 

dQ. {27cti)k<t ( 2 / i + l ) ( 2 X + l ) 

X\Aa„ln{En)\*\h{9p)\*\G{kfv)\*( ' ) £ ) ) . (33') 
\ 0 I —\J n~\-h \0 M — w \ « — w m—nJ 
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We further give the result for the singlet case /»=0: 

fd*M\ M2 kp (2//+1) e?Bi'-n(EK) /d*™\ 

\ dQ Jin„o (2irfi*Ykd (2Ji+l) (2X+1)2 
Aanin(En)\*\h(ep)\*\G(Kfp)\>. (34) 

G(kn,fp) is a deuteron form factor corresponding to (22) 
and reads 

G(*n,fp)= - (4*-)1'2 /* ' i o ^ M X o W r 2 * . (35) 

The corresponding orbital factor becomes 

h(9p)^ J h(iknrp)*kp^*(Tp) 
X^d^(rv)rf-^l)dTp. (36) 

The integral is again sharply peaked around rpc^.fp and 
can, therefore, be approximated by 

/ x ( 0 p ) ^ y - ( x + 1 ) / ( » p ) , (37) 

where I(6P) is given by Eq. (24), the angular factor for 
the case of pure Coulomb stripping. To the extent that 
(36) holds, approximately the same angular distribution 
is predicted for Coulomb stripping with or without 
Coulomb excitation. One also notes that the cross sec
tions for final states belonging to the same parent core 
remain proportional to 2 / / + 1 . 

The relative importance of the described process is 
determined by the ratio of the cross sections for Cou
lomb stripping with and without associated Coulomb 
excitation. We shall assume the same neutron reduced 
widths and binding energies in order to obtain an esti
mate for the ratio of these cross sections: 

<fo<2> /da™ ( 2 J / + 1 ) e2Bi^i(EX) 

dQ dti (2//+1) (2X+1)VX+2 

G(kn,fp) 

F(kn,fp) 
(38) 

Here Jf refers to the case of stripping accompanied by 
Coulomb excitation. The deuteron form factor G(kn,fp) 
calculated for a Hulthen potential is approximately 

G(kn,fp)~\ 
-2a(a+/z)(2a+M)" -i 1/2 p(kn—a)rp 

4 T T M
2 2kn(kn—a) 

For the ratio of form factors one then finds 

F(kn,rp) 2kn(kn — odVo 

(39) 

(40) 

The ratio p is presumably most interesting for the 
common case of electric quadrupole excitation: For 
kn^2,7a, M =3a, F 0=44,5 MeV and Ed/Z= (1/15) (in 

MeV), J / = i and J / = f we obtain 

(41) 

where B(E2) is expressed in units of e2XlO~48 cm4. 
Clearly, in order to obtain measurable values of p one 
needs not only a "collective" target but also rather low 
deuteron energies. 

We first consider as targets the so called even-even 
vibrational nuclei. Little is known about their odd 
neighbors, but it seems that some of their low-lying 
states indeed come close to a description of a single 
particle coupled to an excited core.9 For Bi>^i(E2) 
values ~ 0 . 2 and Z»=0, p may become as big as 0.1-0.2. 
I t is clear that the relative importance of fm increases 
with Z/Ed but absolute cross sections may fall below 
measurable values for too large values of this parameter. 

A word on rotational nuclei is in order here, since the 
largest Bi>-*i(E2) values are found for those nuclei. How
ever, low-lying states of odd rotational nuclei are con
sidered to represent an intrinsic structure which rotates 
as a whole and not as an odd nucleon coupled to an 
even-even core. The latter states might occur at much 
higher energies for which Eq. (41) does not hold. I t 
would nevertheless be interesting to test by Coulomb 
stripping the purity of the strong coupling model, in 
particular for product nuclei with spin | . 

Before closing this section we wish to point at a pos
sible interference between the amplitudes / ( 1 ) and / ( 2 ) in 
particular in the quadrupole case. If the target nucleus 
has a ground state with J^ 1 then / ( 2 ) contributes also 
to transitions caused by pure Coulomb stripping, 
namely, those leading to a state in which a neutron is 
coupled to the ground state of the target parent. / ( 2 ) will 
then contain the reduced static quadrupole moment 
Q(E2) instead of B{E2). The possible change in the 
cross section might yield information on static quad
rupole moments. 

IV. POLARIZATION OF THE DEUTERON 

Since for the deuteron the centers of mass and charge 
do not coincide, the asymmetric Coulomb field acting on 
the deuteron may, in principle, polarize the deuteron. 
The ensuing modification of the deuteron wave function 
can be approximately calculated following either the 
variational method of Downs10 or the perturbation 
method of Ramsey et al.11 The approximation is based 

9 A. de-Shalit, Phys. Rev. 122, 1530 (1962). 
10 B. W. Downs, Phys. Rev., 98, 194 (1955). 
11 N. F. Ramsev, B. J. Malenka, and U. E. Kruse, Phys. Rev. 91, 

1162 (1953). 
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on the fact that for Ed<^Ze2/R^ the electric field is 
changing slowly in the region of the classical turning 
point while the local velocity of the deuteron is small. 
This enables the use of an adiabatic approximation 
according to which the modified ground state of the 
deuteron is to first order given by 

then to the form 

x(fy„) = x t o + £Xi(r), (42) 

where £ = Ze/rp
2 is the local electric field acting on the 

proton. Xi(r) for a Serber interaction of the Hulthen 
type with a range parameter /*, is given by 

where 

eM\ 

x i M = £ M co s0p 

•2a(a+fx)(2a+fx)-]1/2( 1 

14a 

(43) 

X 

4TTM2 

•2(l+ar) 

M2(2a+/z)2 

p~(a,+n)r 

L r 

2(«+M) 
.£-(«+M)r_M(2a + M)e-(«+M)r , (44) 

and c o s ^ = (kd*kp)/kdkp. 
If we now7 take x (*,rp) for the intrinsic deuteron wave 

function instead of x(r) m (23) we obtain for the 
Coulomb stripping cross section 

da™ M2 kp(2Jf+l) 

dtt (2<irfi2)2kd (2Ji+l) 

y V I f , ( D i - A f . (i)| 2 
/ \Z- r f | J ctnlnmin x^J anlnmin \ • 

The additional amplitude A/ ( 1 ) is given by 

Afanlnmn^= -4irAanln(En)Ze2 

X I ji(iknr)Vnp(r)g(r)r2dr 
Jo 

X / hi(iknrp) co$BpYinmi*($p) 

(45) 

X*^*{rP)^d^(rv)rv~
2dTp. (46) 

We shall use the previous arguments to replace hi(iknrp) 
by its asymptotic behavior ie~knrp/knrp and take rp~

2 

out of the integral at the point rp = fp. In addition, we 
can assume the integrand to be peaked backwards, and 
may thus substitute for the slowly varying function 
cos0 the value — 1. The differential cross section, now 
taking into account the deuteron polarization, reduces 

da™ da™[ AF(knfp)}
2 

H (47) 
dtt dtt { F(kn,fp) 

where (da™/dQ) is given by (27) and F equals 

Ze rfp 
iAF(knfp)=-4>ir— / ji(iknr)Vnp(r)g(r)r2dr. (48) 

V Jo 

One first concludes that the polarization of the 
deuteron does not change the angular distribution of the 
protons. Further it turns out that the ratio AF/F for 
both Yukawa and Hulthen potentials is only of the order 
of a few per cents. Therefore, also the absolute value of 
the cross section is not appreciably affected. I t can be 
shown in the same way that this correction is not 
important in the case of an accompanying Coulomb 
excitation either. 

V. CONCLUSION 

We have presented above an approximate theory of 
Coulomb stripping. The underlying direct reaction 
mechanism is the same as in normal stripping. Since, 
however, in Coulomb stripping the effective interaction 
area is relatively far outside the nuclear surface, particu
lar approximations could be introduced. These lead to 
an analytical expression for the cross section. The 
characteristic backward distribution of outgoing protons 
appears unaffected by the retention of a proton-neutron 
interaction of finite range. Stripping form factors on the 
other hand are appreciably modified and now account 
for discrepancies found on comparing experiments with 
a zero-range interaction picture. 

We have to admit that there is still lacking a more 
satisfactory proof, showing that the approximations 
hold to order deuteron radius over the distance to 
classical turning point. Work in this direction is in 
progress. 

The second process considered is Coulomb stripping 
associated with Coulomb excitation, leading to an 
interesting new class of excited final states describing a 
neutron coupled to a Coulomb excited target. I t appears 
that under favorable circumstances the latter process 
may compete with Coulomb stripping. 

We mention that appreciable cross sections can be 
obtained for this type of neutron transfer reactions if 
heavy ions are used instead of deuterons. The theory 
given applies to them as well. 

I t has further been shown that the polarizability of 
the deuteron is of minor importance. In particular, the 
Oppenheimer-Phillips processes can be neglected. 

The authors wish to thank their colleagues, in particu
lar S. Nussinov and M. Banerjee, for fruitful discussions. 
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APPENDIX 

In order to prove Eq. (33') from (33) we first write the relevant sum by means of 3—j symbols as follows: 

S= ( 2 i n + l ) ( 2 / / + l ) ( 2 / / + l ) E (-^-mn+M^-M, 
magnetic quantum 

numbers 

l"n Jn \f 2 "n Jn \/Jn ^* ** f \ / Jn ^^ ^ f 

m*n
 min — mn7\mn M/ • 

J i A J i \ / J i ^ * 

/ i t>n Jn \ / h In Jn \/Jn Ji Jf \ / Jn Ji Jf \ 

\mSn min —mn/\mSn m^ —ntn'/\nin Mi — Mf/\mn' Mi —Mf) 

/Ji X Jx' \/Ji X J/ \ 
L . „ , ( „ , ,r„)f^inmn^(Xfi)fanlnmln^(X^). (Al) 
\Mi fx —Mc/\Mi M —M/7 

We shall frequently apply the formula 

E j )( )=Ei,»,(-)^^1+ni(2/.+i) 
Wi m2 m%/\n\ n2 —in%/ 

fii h jz\/h J2 h\/ji h h \Ji J2 73] (h J2 k\/Ji h h\ , N 

X ) (A2) 
\h h h)\ni m2 n%J\m\ n2 —nd/ 

and any modification thereof applying the orthogonality relation for the 3—j symbols. 
By virtue of the symmetry relations of 3—j symbols and Eq. (A2) we can cast Eq. (Al) in the form 

/In h k \/X X k\ 
S= ( 2 y n + l ) ( 2 / / + l ) ( 2 / / + l ) £ (-yf-Ji-i+min'+^^k+Vl f )( ) 

magnetic quantum \ m l n ~mln ~-OL/\JJL —\i! a/ numbers 

[Ji Jn Jf) f X Ji Ji] \ln jn | l 
X . r [ I t . , , \f^inmin^(X^fanlnmln^{X^). (A3) 

I Jn / / k i (Ji X k i [jn ln k\ 

I t is at this point that we use the saddle-point approximation, whose content is [compare Eq. (20)] 

Unlnmm ™ M = ~ ?'ln™n ( 3 , ) YXfi@p)A « n | n (En)IX (Op)G(kn,fp) . ( A 4 ) 

We now use the coupling formula for spherical harmonics 

/ In X k\ _ _ r{2ln+l)(2X-j-l)-]^/k' U X\ 
ZA )Fznw,n(fip)Fx^(0J,)= (-)«'+*'+'• — ( )Y»-a,(Qp). (A5) 

\min ix' a7 L 47r(2&'+1) J \ 0 2 0/ 

A last relation, the addition formula for F's of equal solid angles reads 

I « ' ( - ) a T ^ . f e ) F ^ ^ ( i 5 , ) = ( 2^+1) /4TT . (A6) 

One now substitutes (A4) into (A3) and applies Eqs. (A5) and (A6) in order to obtain 

S= (2 j„+1) (2/y+1) (2 / /+1) M 

(2k+1) (2*'+1) (2/n+1) (2X+1) 
X V (—y/-Ji-i+k+*+in 

h,W 167T2 

/k' ln X \ 2 l X X k)iX X kUln In k)(jn j n & ] 

\ 0 0 0/ \ln In k'Wji' Ji' JiWjn jn § l t / / J/ Jf\ ' 

Repeated application of (A2) and symmetry relations finally leads to (33f). 


